17,424 research outputs found

    Kinematic Self-Similar Cylindrically Symmetric Solutions

    Full text link
    This paper is devoted to find out cylindrically symmetric kinematic self-similar perfect fluid and dust solutions. We study the cylindrically symmetric solutions which admit kinematic self-similar vectors of second, zeroth and infinite kinds, not only for the tilted fluid case but also for the parallel and orthogonal cases. It is found that the parallel case gives contradiction both in perfect fluid and dust cases. The orthogonal perfect fluid case yields a vacuum solution while the orthogonal dust case gives contradiction. It is worth mentioning that the tilted case provides solution both for the perfect as well as dust cases.Comment: 22 pages, accepted for publication in Int. J. of Mod. Phys.

    Persistence of black holes through a cosmological bounce

    Full text link
    We discuss whether black holes could persist in a universe which recollapses and then bounces into a new expansion phase. Whether the bounce is of classical or quantum gravitational origin, such cosmological models are of great current interest. In particular, we investigate the mass range in which black holes might survive a bounce and ways of differentiating observationally between black holes formed just after and just before the last bounce. We also discuss the consequences of the universe going through a sequence of dimensional changes as it passes through a bounce.Comment: 8 pages, 1 figur

    Growth of primordial black holes in a universe containing a massless scalar field

    Full text link
    The evolution of primordial black holes in a flat Friedmann universe with a massless scalar field is investigated in fully general relativistic numerical relativity. A primordial black hole is expected to form with a scale comparable to the cosmological apparent horizon, in which case it may go through an initial phase with significant accretion. However, if it is very close to the cosmological apparent horizon size, the accretion is suppressed due to general relativistic effects. In any case, it soon gets smaller than the cosmological horizon and thereafter it can be approximated as an isolated vacuum solution with decaying mass accretion. In this situation the dynamical and inhomogeneous scalar field is typically equivalent to a perfect fluid with a stiff equation of state p=ρp=\rho. The black hole mass never increases by more than a factor of two, despite recent claims that primordial black holes might grow substantially through accreting quintessence. It is found that the gravitational memory scenario, proposed for primordial black holes in Brans-Dicke and scalar-tensor theories of gravity, is highly unphysical.Comment: 24 pages, accepted for publication in Physical Review

    Near-Critical Gravitational Collapse and the Initial Mass Function of Primordial Black Holes

    Get PDF
    The recent discovery of critical phenomena arising in gravitational collapse near the threshold of black hole formation is used to estimate the initial mass function of primordial black holes (PBHs). It is argued that the universal scaling relation between black hole mass and initial perturbation found for a variety of collapsing space-times also applies to PBH formation, indicating the possibility of the formation of PBHs with masses much smaller than one horizon mass. Owing to the natural fine-tuning of initial conditions by the exponential decline of the probability distribution for primordial density fluctuations, sub-horizon mass PBHs are expected to form at all epochs. This result suggests that the constraints on the primordial fluctuation spectrum based on the abundance of PBHs at different mass scales may have to be revisited.Comment: 4 pages, uses revtex, also available at http://bigwhirl.uchicago.edu/jcn/pub_pbh.html . To appear in Phys. Rev. Let
    corecore